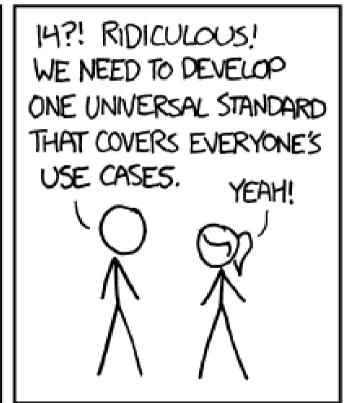


The Opus Codec

<u>Jean-Marc Valin</u>, Koen Vos, Timothy B. Terriberry, Gregory Maxwell

CCBE
27 September 2013


- New highly-flexible speech and audio codec
 - Works for most audio applications
- Completely free
 - Royalty-free licensing
 - Open-source implementation
- IETF RFC 6716 (Sep. 2012)

Why a New Audio Codec?

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

500N:

SITUATION: THERE ARE 15 COMPETING STANDARDS.

http://xkcd.com/927/

http://imgs.xkcd.com/comics/standards.png

Why Should Broadcasters Care?

- Ultra-low delay
- Adaptability to varying network conditions
- Best-in-class performance within a wide range of bitrates
- No licensing costs
- No incompatible flavours

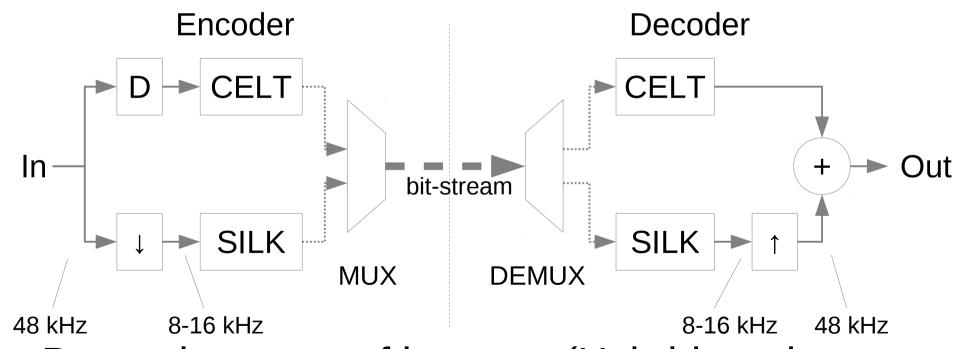
Applications and Standards (2010)

Application	Codec
VoIP with PSTN	AMR-NB
Wideband VoIP/videoconference	AMR-WB
High-quality videoconference	G.719
Low-bitrate music streaming	HE-AAC
High-quality music streaming	AAC-LC
Low-delay broadcast	AAC-ELD
Network music performance	

Applications and Standards (2013)

Application	Codec
VoIP with PSTN	Opus
Wideband VoIP/videoconference	Opus
High-quality videoconference	Opus
Low-bitrate music streaming	Opus
High-quality music streaming	Opus
Low-delay broadcast	Opus
Network music performance	Opus

- Highly flexible
 - Bit-rates from 6 kb/s to 510 kb/s
 - Narrowband (8 kHz) to fullband (48 kHz)
 - Frame sizes from 2.5 ms to 60 ms
 - Speech and music support
 - Mono and stereo
 - Flexible rate control
 - Flexible complexity
- All changeable dynamically, signaled within the bitstream

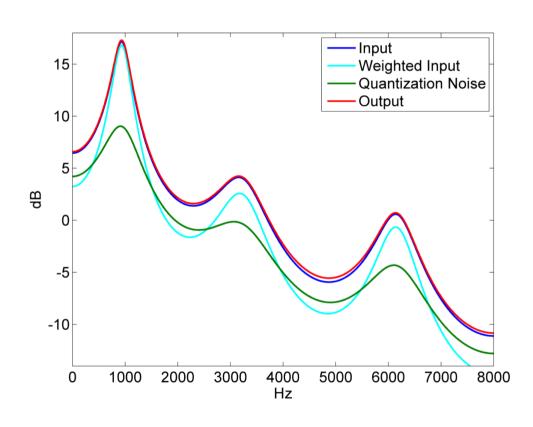

Rate Control

- Opus supports true CBR
 - Every packet has the same number of bytes
 - No bit reservoir => no extra delay
 - Quality not as good as VBR
- Constrained VBR
 - Total variation within 1 frame of CBR (same as bit reservoir)
 - Bounded delay, better transients, etc.
- True VBR
 - Open loop: calibrated to a large corpus
 - Gets the most benefit from new encoder improvements
- Bitrate cap possible for both VBR modes

Opus Design

- SILK: Based on voice codec from Skype
- CELT: MDCT codec from Xiph.Org

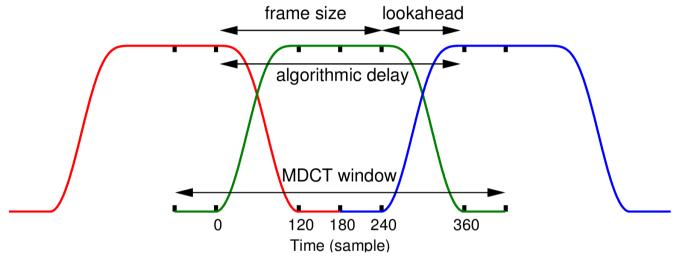
 Better than sum of its parts (Hybrid mode, seamless mode switching)


SILK Technology

- Originally used in Skype
- Based on linear prediction (LPC)
- Very good at narrowband and wideband speech up to ~32 kb/s
- Not very good on music
- Heavily modified to integrate with Opus

SILK Technology

- Based on Noise Feedback Coding rather than Analysis-by-Synthesis
- Analysis/synthesis mismatch to deemphasize spectral valleys
 - Replaces post-filters
- Variable-rate coding

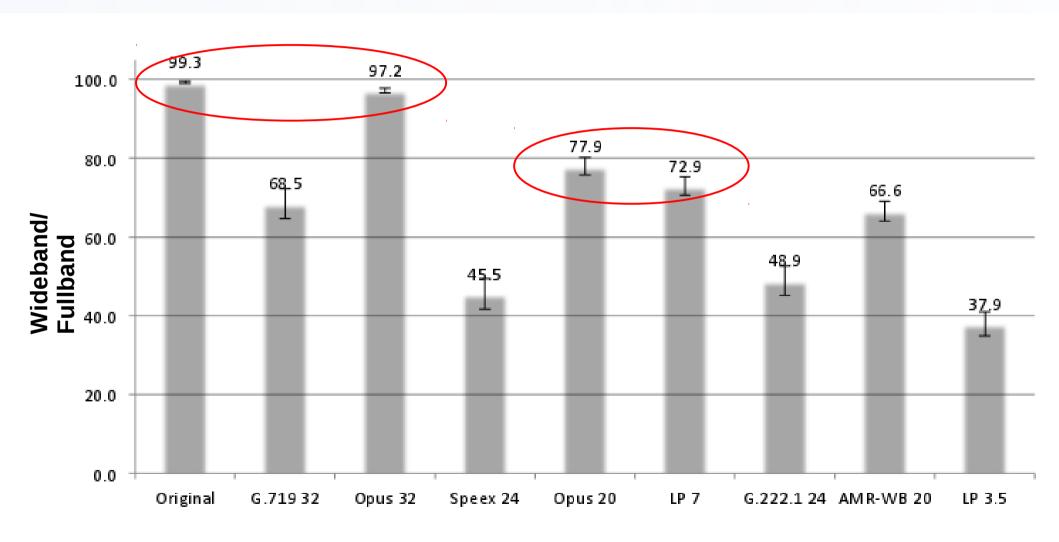

CELT Technology

- "Constrained-Energy Lapped Transform"
 - Psychoacoustics built into the format
 - Harder to write a bad encoder
- Works on speech and music
- Most efficient on fullband audio (48 kHz)
- Less efficient on low bitrate speech

CELT Technology

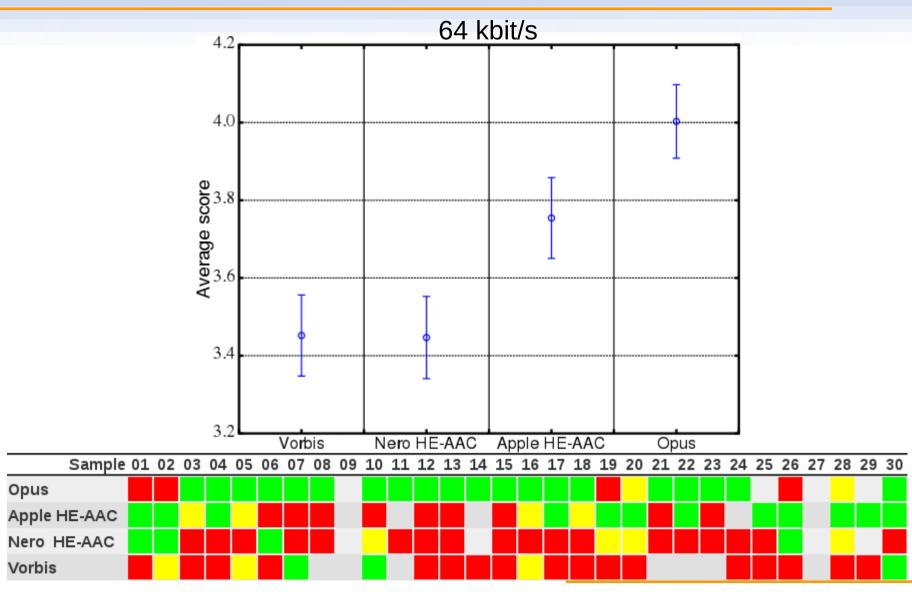
MDCT with low-overlap window

- Code band energy separately from spectrum "details"
 - Preserves the energy in each critical band
- Implicit masking curve defined by the format
 - No need to code scalefactors

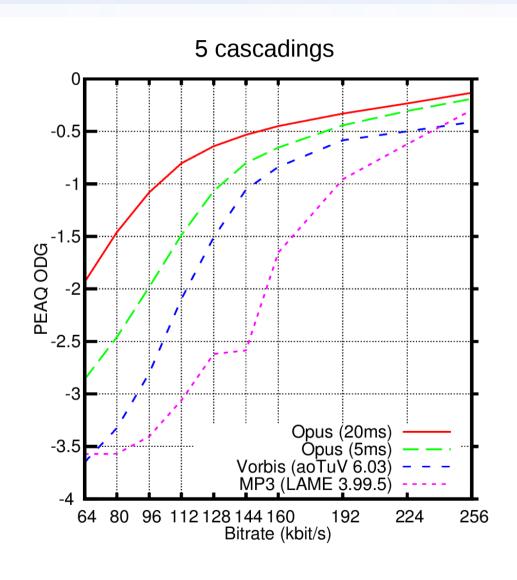


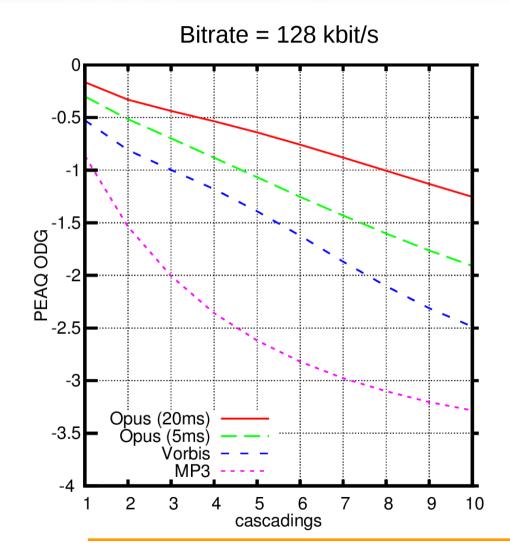
CELT Stereo Coupling

- Code separate energy for each channel
 - Prevents cross-talk
- Converts to mid-side after normalization
 - Mid and side coded separately with their relative energy conserved
 - Prevents stereo unmasking
- Intensity stereo
 - Discards side past a certain frequency



Google Listening Tests




HydrogenAudio Results

Cascading Tests (AES 135)

Adoption

- Broadcast
 - Tieline, Mayah, Harris Broadcast
 - CBS, ABC, NBC, NPR, Fox, Cumulus, ...
- Distribution
 - Magnatune music store
 - StreamGuys CDN
- VoIP and videoconference
 - Jitsi, Meetecho, CounterPath, Mumble, Teamspeak, ...
 - Mandatory-to-implement for WebRTC

- HTTP streaming
 - Firefox 18+ (incl. FFOS), Chrome, Opera
 - Lots of other players:
 - FFMpeg, GStreamer, VLC, Foobar2k, Winamp (with a plugin), Amarok, xmms2, etc.
 - Icecast 2.4-beta1 added Opus support
- Examples:
 - http://dir.xiph.org/by_format/Opus
 - http://www.absoluteradio.co.uk/listen/labs.html

Roadmap

libopus 1.1

- Beta released in July, full release "soon"
 - https://people.xiph.org/~xiphmont/demo/opus/demo3.shtml
- First release with True VBR
 - Tonality estimation
 - Better dynamic allocation
 - Improves on the built-in psychoacoustics
 - Temporal VBR (discovered by accident!)
- Automatic speech/music detection
 - Optional delayed decision (better high-latency performance)

libopus 1.1 (cotd.)

- Better surround encoding
 - Better API (knows which channel is which)
 - Better LFE encoding
 - Inter-channel masking
- Major ARM performance gains:
 - 40% decoder CPU reduction
 - 27% encoder CPU reduction (33% with Neon)

Standards

- RTP (draft-ietf-payload-opus)
 - Hopefully WGLC soon
- Ogg (draft-ietf-codec-oggopus)
 - Maybe WGLC soon?
- WebM (Matroska)
 - Opus paired with VP9 for next RF video format
 - Used by YouTube
 - Spec'd at https://wiki.xiph.org/MatroskaOpus
 - Implementations underway
- Minor RFC 6716 revisions (draft-valin-codec-opus-update)
 - 3 minor bug-fixes to the reference implementation
 - Feedback at codec@ietf.org welcomed!

Opus in RTP

- Very simple: 1 RTP payload == 1 Opus packet
 - From 2.5 ms to 120 ms audio
- Packets decodable with no OOB signaling
 - No negotiation failure, always opus/48000/2
 - All SDP parameters are informative
 - Mono/stereo, bitrate, audio bandwidth, frame size, mode, etc., signaled in band
 - Receiver decodes all of these transparently
 - Encoder and decoder can run at different rates

Opus in Ogg

- Includes surround support, up to 255 channels
- Similar to RTP mapping
 - Header is informative (except surround)

- Website: http://opus-codec.org
- Mailing list: opus@xiph.org
- IRC: #opus on irc.freenode.net
- Git repository: git://git.opus-codec.org/opus.git

Questions?